Aalto University School of Science

MS-E2177 - Seminar on Case Studies in Operations Research

Applying Advanced Analytics in Asset Allocation

Interim Report

Client:

Varma

Team:

Leevi Olander (Project Manager) Julius Lind Samuli Mäkinen Rasmus Heikkilä

April 23, 2019

1 Project Status and Accomplished Tasks

Our project was initially divided in 3 tasks:

- Exploratory data analysis and data processing
- Clustering of indicators & time periods and factor analysis
- Predictive modeling and benchmarking

Of these three tasks the first two have been completed, but further data processing will likely be needed as we begin implementing predictive models.

During exploratory data analysis all of the data was visually inspected to identify outliers or changes in data reporting (i.e changes in the scale of survey questions). No outliers or changes were found. Some time series were found that contained no data for some time periods, and were dropped from the dataset. Since the time-series were of differing lengths, some beginning as early as 1998 and some as late as 2011, we restricted the data set to only contain series that had data starting from 2005. This left us with a dataset consisting of 56 time series out of the original 60. Finally the time series were transformed to the same frequency by taking monthly averages from the daily and weekly series.

The clustering of indicators & time periods and factor analysis have provided valuable insight for the continuation of the project. For instance, the cross correlation has successfully identified lag based relationships, the principal component analysis has been used to decrease the number of input dimensions and the hierarchical clustering has identified which indicators are the most similar to each other.

Extensive literature reviews have been conducted regarding predictive models. Based on the literature reviews we are currently discussing some modeling choices with Varma, after which we can begin implementing the actual models. Additionally, the scope and objectives of the project were clearly defined by Varma at the start of the project. The workload and feasibility of the original objectives has been reasonable, so no changes have been made on that front.

2 Remainder of the Project & Schedule

Tasks	Activities	Week Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Supporting Tasks	Development Environment																						
	Coding Conventions																						
	Code Libraries																						
	Version Control																						
Client Interaction	Meeting with the Client																						
	Signing of NDAs																						
	Receiving the Dat	ta																					
	2nd Meeting with the Client																						
	3rd Meeting with the Client																						
	4th Meeting with t	he Client																					
Reporting	Project Plan Delivery																						
	Interim Report De	livery																					
	Final Report Deliv	very																					
Data	Cleaning and Verification																						
	Frequency Transf	form																					
	Smoothing																						
Clustering of Indicators	Principal Compor	ent Analysis																					
& Factor Analysis	Independent Com	ponent Analysis																					
	Cross Correlation																						
Predictive Models	Lasso Regressior	ı																					
	K-nearest Neighb	ors																					
	Random Forest																						
	PCA / ICA																						
Performance Benchmark	Benchmark Mode	1																					
	Benchmark Test																						

Figure 1: A Gantt chart of the revised project schedule, where the area surrounded by black borders has been updated. The week numbers corresponds to the weeks of the course MS-E2177, which started on 11.01.2019. The red vertical lines show the deadline for deliverables and the blue line symbolises the current deadline.

The project has progressed mostly according to the original schedule, as shown in 1. The first two tasks outlined in the previous section were completed by their planned deadlines. The schedule for predictive modeling has however changed. In our original schedule we had budgeted most of the time into implementing different methods for predictive modeling such as lasso regression and K-nearest neighbors. However we quickly noticed that the actual implementation of the models with different methods takes very little time. The time consuming part has been defining the predictive models.

When defining our models several nontrivial choices have to be made. Firstly, how to use our data. Most regression methods assume that the input data is stationary, and the data is usually stationarized by taking the relative difference between subsequent points. This has the downside of losing information about the magnitude of the variable, which can be more important than the relative change for some variables. To define which variables to stationarize, we are heavily relying on Varma's expertise of financial markets.

As defining the predictive models has taken longer than expected, most of the remaining time has been budgeted towards model design. Implementing the models will be done along with model design until we obtain acceptable results.

Risk	Likelihood	Impact	Effect	Mitigation measures					
Model fails in	Very High	High	Model is not	Testing multiple models and					
performance			useful to the	careful study of relevant lit-					
benchmark			client.	erature.					
Too large	Medium	Medium	Lower quality	Start with a small number					
workload			and delays in	of models, expand the scope					
			project	only if time permits. Main-					
			schedule.	tain active discussion with					
				the client about task prioriti-					
				zation.					
Data quality	Low	Medium	Misleading,	Understanding the limita-					
issues			incorrect or	tions both in data and meth-					
			inaccurate	ods used.					
			results.						
Team member	Very Low	High	High workload	Good communication be-					
absence /			for other team	tween the project manager					
inactivity			members.	and the rest of the team.					
				Clear schedule and fast					
				reaction to delays.					
Communication	Very Low	Medium	Result is not	Good communication with					
issues with the			what the client	client by email and frequent					
client			wanted.	meetings with the client.					
Issues with	Very low	Low	Delays in	Use algorithms with low					
computational			project	enough computational bur-					
resources			schedule.	den.					

3 Updated Risk Management Plan

Table 1: Updated risks related to the project. The background colors show whether the risk has either increased (red) or decreased (blue) from the previous assessment.

Table 1 shows our updated risk table. With the exception of model failure, the likelihood of all risks has decreased or stayed the same. The likelihood of model failure has increased from high to very high, as mostly poorly performing models were found during literature reviews. As the data has been thoroughly inspected with no issues emerging, it is unlikely that data quality would cause issues in the future. And since communication within our team and with Varma has been excellent, the these two risks were lowered.